Cobalt™ MV Bone Cement
Medium Viscosity Radiopaque Bone Cement
Methyl Methacrylate – Styrene Copolymer

ATTENTION OPERATING SURGEON

DESCRIPTION
Cobalt™ MV Bone Cement provides two separate, pre-measured, sterilized components, which when mixed form a radiopaque, rapidly setting bone cement.

One component is supplied in a gas-permeable packet. It consists of 40 grams of powder with the following composition:

- Methyl methacrylate-styrene copolymer 29.21 grams – 29.51 grams
- Poly (methyl methacrylate) 6.00 grams
- Zirconium dioxide 4.00 grams
- FD&C Blue #2 Aluminum Lake 0.05 grams
- Benzoyl peroxide 0.44 grams – 0.74 gram

The other component is supplied in a flexible pouch. It consists of 20 ml of liquid (monomer) with the following composition:

- Methylmethacrylate (stabilized with hydroquinone) 18.424 grams
- N,N-dimethyl-p-toluidine 0.376 grams

The liquid monomer is sterile filtered. The exterior of the pouch containing the liquid is sterilized with vaporous hydrogen peroxide. The powder is sterilized with ethylene oxide. The gas permeable packets containing the powder are sterilized with ethylene oxide.

Blue pigment (FD&C Blue No. 2 Aluminum Lake) is added to the powder component to produce a bluish tint in the final cement. This renders it possible to distinguish between bone and cement within the surgical field.

When the powder (copolymer) and the liquid (monomer) are mixed, the dimethyl-p-toluidine in the liquid activates the benzoyl peroxide catalyst in the powder. This initiates the polymerization of the monomer which then binds together granules of polymer. As polymerization proceeds, a sticky dough-like mass is formed, which, after about 3 minutes can be manipulated for about 5 minutes (at 23°C [73.4°F]). (See curves and tables for temperature variations.)

Polymerization is an exothermic reaction with temperatures rising as high as 90°C, which occurs while the cement is hardening in situ. The released heat may damage bone or other tissues surrounding the implant. Although the spontaneous generation of heat accelerates the reaction, the polymerization of this self-curing resin occurs even if the temperature is reduced by irrigation with a cool physiologic saline solution.

MATERIALS
Methylmethacrylate-styrene copolymer (containing benzoyl peroxide)
Poly (methyl methacrylate)
Benzoyl peroxide
Zirconium dioxide
FD&C Blue #2 Aluminum Lake
Methylmethacrylate (stabilized with hydroquinone)
N,N-dimethyl-p-toluidine

ACTION
Cobalt™ MV Bone Cement is an acrylic cement-like substance which allows seating and fixation of prostheses to bone. After complete polymerization, the cement acts as a buffer for even weight distribution and other stresses between prosthesis and bone. Insoluble zirconium dioxide provides the radiopaque quality of the formulation.

INDICATIONS
Cobalt™ MV Bone Cement is indicated for use as bone cement in arthroplastic procedures of the hip, knee and other joints to fix plastic and metal prosthetic parts to living bone when reconstruction is necessary because of osteoarthritis, rheumatoid arthritis, traumatic arthritis, avascular necrosis, nonunion of fractures of the neck of the femur, sickle cell anemia osteoporosis, secondary severe joint destruction following trauma or other conditions (also for fixation of unstable fractures in metastatic malignancies), and revision of previous arthroplasty procedures.
CONTRAINDICATIONS
Cobalt™ MV Bone Cement is contraindicated in patients allergic to any of its components. The use of Cobalt™ MV Bone Cement is contraindicated in patients with infectious arthritis and in active infection of the joint or joints to be replaced or if there is a history of such infection. The device is also contraindicated where loss of musculature or neuromuscular compromise in the affected limb would render the procedure unjustifiable.

WARNINGS
NOTE: Adulteration of this bone cement may negatively affect performance characteristics.

Prior to using Cobalt™ MV Bone Cement, surgeons should, by specific training and experience, be thoroughly familiar with the properties, handling characteristics, and application of the PMMA bone cement (see Precautions and Mixing Technique). Because the handling and curing characteristics of this cement vary with temperature and mixing technique, they are best determined by the surgeon’s actual experience. It is advisable for the surgeon to go through the entire mixing, handling and setting process in vitro before using the material in an actual surgical procedure.

Adverse cardiovascular reactions can include hypotension, hypoxemia, cardiac arrhythmia, bronchospasm, cardiac arrest, myocardial infarction, pulmonary embolism, cerebrovascular accident and possible death. Hypotensive reactions can occur between 10 seconds and 165 seconds after application of PMMA bone cement and can last for 30 seconds to 5 or more minutes. Some hypotensive reactions have progressed to cardiac arrest. The blood pressure, pulse and respiration of patients should be monitored carefully during and immediately following the application of the PMMA bone cement. Any significant alteration in these vital signs should be corrected with appropriate measures. In addition, overpressurization of the PMMA bone cement should be avoided during the insertion of the PMMA bone cement and implant in order to minimize the occurrence of pulmonary embolism.

The risk of pulmonary fat embolism and the severity of all Bone Cement Implantation Syndrome (BCIS) complications can be reduced by meticulous irrigation and drying of the intramedullary canal. Care should be taken to clean and aspirate the proximal portion of the femoral medullary canal just prior to insertion of bone cement. In high-risk patients, for example those sustaining hip fractures, care should be taken not to over-pressurize the cement and to insert the prosthesis slowly.

Device volatility and flammability and electrocautery devices: The operating room should be adequately ventilated to eliminate monomer vapors. Ignition of monomer vapors caused by use of electrocautery devices in surgical sites near freshly implanted bone cements has been reported.

Irritation of the respiratory tract, eyes, and the liver: Caution should be exercised during the mixing of the liquid and powder components of the PMMA bone cement to prevent excessive exposure to the concentrated vapors of the liquid component, which may produce irritation of the respiratory tract, eyes, and possibly the liver. Personnel wearing contact lenses should not mix PMMA bone cement or be near the mixing of the PMMA bone cement.

1. DO NOT USE if there is loss of sterility of the cement.
2. Discard and DO NOT USE opened or damaged packages of the bone cement. Use only product packaged in unopened and undamaged containers.
3. Loosening and fracture of either the cement or the prosthesis, or both, can occur due to disease, trauma, and inadequate cementing technique, mechanical failure of the materials or latent infection.
4. The liquid and powder components of this cement must be mixed thoroughly before using. Inadequate mixing will lead to inhomogeneity that will compromise the mechanical properties and clinical performance of the cement.
5. DO NOT USE bone cement after expiration date.

The surgeon should decide whether the benefits expected from an arthroplasty outweigh any possible long-term adverse effects.

PRECAUTIONS
Strict adherence to good surgical principles and technique are required during use of the cement. Deep wound infection is a serious postoperative complication and may require total removal of the prosthesis and embedded cement. Deep wound infection may be latent and not manifest itself for several years postoperatively.

1. Contact dermatitis: The liquid component (monomer) has caused contact dermatitis in those handling and mixing PMMA bone cement. Strict adherence to the instructions for mixing the powder and liquid components may reduce the incidence of contact dermatitis.
2. Hypersensitivity reaction: The liquid component of the PMMA bone cement is a powerful lipid solvent. It should not contact rubber or latex gloves. Should contact occur, the gloves may dissolve and tissue damage may occur. Wearing a second pair of gloves and strict adherence to the mixing instructions may diminish the possibility of hypersensitivity reactions. The mixed bone cement should not make contact with the gloved hand until the cement has acquired the consistency of dough. This usually occurs between one minute and two minutes after the liquid and powder components are mixed.
3. Inadequate post-operative fixation: Inadequate fixation or unanticipated postoperative events may affect the PMMA bone cement-bone interface and lead to micro-motion of cement against the bone surface. A fibrous tissue layer may develop between the PMMA bone cement and the bone that may cause loosening of the prosthesis. Thus, continued, periodic follow-up is advised for all patients.
4. Exothermic reaction: Polymerization of the PMMA bone cement is an exothermic reaction that occurs while the PMMA bone cement is hardening in situ. The released heat may damage bone or other tissue adjacent the implant.
5. **Extrusion:** Extrusion of the PMMA bone cement beyond the region of its intended application may occur resulting in the following complications: hematuria; dysuria; bladder fistula; delayed sciatic nerve entrapment from extrusion of the bone cement beyond the region of its intended use; local neuropathy; local vascular erosion and occlusion; and intestinal obstruction because of adhesions and stricture of the ileum from the heat released during the exothermic polymerization.

6. **USE IN PREGNANCY:** The safety and effectiveness of the PMMA bone cement in pregnant women has not been established. PMMA bone cement may adversely affect fetal health.

7. **PEDIATRIC USE:** The safety and effectiveness of the PMMA bone cement in children has not been established. PMMA bone cement may adversely affect bone growth.

8. **Expiration dating:** PMMA bone cement should not be used after the expiration date because the effectiveness of the device may be compromised.

9. **Disposal:** Expired cement should be mixed according to Instructions for Use prior to disposal. Because of the volatility and flammability of the liquid monomer of the PMMA bone cement, liquid monomer that has leaked or is leaking from the package should be collected and evaporated in a well-ventilated hood or absorbed by an inert material and transferred in a suitable container (one that does not react with the PMMA bone cement) for disposal.

Avoid over pressurization of the bone cement because this may lead to extrusion of the bone cement beyond the site of its intended application and damage to the surrounding tissues.

POSSIBLE ADVERSE EVENTS

The most serious adverse events, including death, reported with the use of acrylic bone cements are:

- Cardiac arrest
- Myocardial infarction
- Pulmonary embolism
- Cerebrovascular accident
- Sudden death

The most frequent adverse events reported are:

- Transitory fall in blood pressure
- Thrombophlebitis
- Hemorrhage and hematoma
- Loosening or displacement of the prosthesis
- Superficial or deep wound infection
- Trochanteric bursitis
- Short-term cardiac conduction irregularities

Other potential adverse events reported are:

- Heterotopic new bone formation
- Trochanteric separation
- Pyrexia due to an allergy to bone cement
- Hematuria
- Dysuria
- Bladder fistula
- Local neuropathy
- Local vascular erosion and occlusion
- Adhesions and stricture of the ileum due to the heat released during polymerization
- Delayed sciatic nerve entrapment due to extrusion of the bone cement beyond the region of its intended application

Adverse reactions affecting the cardiovascular system have been attributed to leakage of unpolymerized liquid monomer into the circulatory system. Data indicate that the monomer undergoes rapid hydrolysis to methacrylic acid and that a significant fraction of the circulating methacrylate is in the form of the free acid, rather than of the methyl ester. Correlation between changes in circulating concentrations of the methyl methacrylate/methacrylic acid and changes in blood pressure has not been established. Hypotensive episodes reported are more marked in patients with elevated or high normal blood pressure, in hypovolemia and in patients with pre-existing cardiovascular abnormalities. Elevations in plasma histamine levels subsequent to introduction of cement have also been reported.

Reports of sometime fatal cardiac arrest suggest that elderly osteoporotic patients undergoing hip replacement surgery for fractures of the femoral neck are at greater risk than those receiving elective joint replacement for arthritic disease. Risk is also higher in patients with pre-existing cardiovascular disease. Although the etiology of cardiac arrest is unclear, it may well be either direct embolic effects or secondary to hypoxia produced by pulmonary embolic phenomena.

Introduction of liquid cement under pressure into a clean medullary canal has been shown to appreciably enhance the filling of the bone cavities with marked improvement in the security of the bone cement interface. Care must be exercised in introducing the cement continuously from distal to proximal to avoid laminations in the cement.
DOSAGE AND ADMINISTRATION

Cobalt™ MV copolymer powder is double packaged. The inner gas-permeable packet and its contents as well as the inside of the foil laminate protective overwrap, are sterilized with ethylene oxide. The packet containing the sterile filtered liquid monomer is packaged in a protective gas-permeable overwrap pouch. The outer of the liquid packet and inside of overwrap pouch are sterilized by exposure to vaporous hydrogen peroxide.

(At least one extra unit of Cobalt™ MV Bone Cement should be available before starting a surgical procedure.)

A unit is prepared by mixing the entire contents of one (1) packet of powder (40 g copolymer) with one (1) packet of liquid (20 ml monomer). One or two units will usually suffice, although this will depend upon the specific surgical procedure and the techniques employed. Each unit is prepared separately.

The following are required for preparation of the bone cement:
- Sterile working area
- Sterile plastic bowl approved for use with monomers
- Sterile mixing spoons or spatulas.

Note: For vacuum mixing, refer to manufacturer instructions.

A circulating nurse or assistant opens the peelable outer powder and liquid pouches and the inner sterile powder packet and liquid pouch are aseptically placed on a sterile table. The powder packet and the liquid pouch are opened under sterile conditions. Since each packet of powder contains a pre-measured quantity of copolymer to react with a pre-measured quantity of monomer, care should be taken to mix the entire contents of one powder packet with the entire contents of one liquid packet. Partial amounts should not be used.

MIXING INSTRUCTIONS FOR BOWL MIXING

Note: Cement can also be mixed in a vacuum mixing system. Refer to manufacturer instructions.

Pour the liquid into a bowl. Add the powder. Stir with a spatula vigorously, but carefully, for about 30 seconds.

CEMENT MAY BE APPLIED IN A PRE-DOUGH STATE, BUT IF A DOUGH-LIKE MASS THAT DOES NOT STICK TO RUBBER GLOVES AS DESIRED, WAIT ANOTHER 2 MINUTES-4 MINUTES DEPENDING ON THE AMBIENT TEMPERATURE (SEE CURVES).

At this state, knead further for about 15 seconds - 30 seconds. The cement becomes more homogenous, and mixed air bubbles disappear for the most part. On the other hand, if the kneading process is extended too long, the polymerization may proceed to the point where the mass is no longer soft and pliable, making manipulation and application to bone difficult.

Working time may be affected by temperature (see curve and table for working and hardening times). Additionally, the moisture content in any bone cement powder has an effect on polymerization; cement powder with a higher moisture content will set faster, while drier cement powder will result in slower set times. The outer foil pouch acts as a moisture barrier for Cobalt™ MV Bone Cement. To minimize fluctuation of set times, do not remove the powder component’s moisture barrier until it is time to mix the cement. Maintaining a constant and moderate (40-55% RH) humidity in the operating room will also lead to more consistent cement handling performance. The ideal working consistency of the Cobalt™ MV Bone Cement for manual application to bone is best determined by the surgeon based upon experience in using the preparation. To assure adequate fixation, the prosthesis should be held securely in place without movement until the bone cement has fully hardened. Excessive cement must be removed while it is still soft. If additional cement is required during the surgical procedure, another packet of liquid and packet of powder may be mixed as described above. The resulting kneadable mass may be applied to previously hardened bone cement.

The completion of polymerization occurs in the patient and is associated with the liberation of heat. To more rapidly dissipate the heat, the polymerizing cement may be irrigated with a cool physiologic saline solution.

STORAGE

Store package in a dry, ventilated place between 6°C and 23°C (42.8°F to 73.4°F). Improper exposure to high temperatures may result in full or partial polymerization of monomer liquid, or reduction in initiator (benzoyl peroxide) content in powder component. These changes could significantly affect cement handling properties, mechanical properties, and clinical result.

Sufficient units should be removed from stocks and stored at about 23°C (73.4°F), or at the temperature appropriate to give desired cement handling and setting properties for 24 hours before use.

The copolymer powder does not withstand heat sterilization treatment. If a packet is accidentally opened, it must not be used.

How supplied

Carton consisting of:
1 packet of copolymer powder containing 40 g
1 packet of liquid monomer containing 20 ml

The following tables and graphs were generated using standard methods including a temperature-controlled environment. Warming of bone cement by any manual manipulation and the eventual application to the surgical site will accelerate the onset and completion of the final hardening phase. The extent of acceleration depends on the timing of manipulation and application. Early and extended warming will have the largest effect on cement hardening.
Typical working data for mixing Cobalt™ MV Bone Cement

Open Bowl Mixing at Ambient Temperatures

<table>
<thead>
<tr>
<th>Ambient and component temperature</th>
<th>18º C</th>
<th>20º C</th>
<th>23º C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing time</td>
<td>0’30"</td>
<td>0’30"</td>
<td>0’30”</td>
</tr>
<tr>
<td>Start of dough phase</td>
<td>5’10”</td>
<td>4’00”</td>
<td>2’50”</td>
</tr>
<tr>
<td>End of application phase</td>
<td>13’10”</td>
<td>10’00”</td>
<td>8’15”</td>
</tr>
<tr>
<td>Hardening</td>
<td>18’30”</td>
<td>15’10”</td>
<td>11’30”</td>
</tr>
</tbody>
</table>

Vacuum Mixing at Ambient Temperatures

<table>
<thead>
<tr>
<th>Ambient and component temperature</th>
<th>18º C</th>
<th>20º C</th>
<th>23º C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing time</td>
<td>0’30"</td>
<td>0’30"</td>
<td>0’30”</td>
</tr>
<tr>
<td>Start of dough phase</td>
<td>3’30”</td>
<td>2’45”</td>
<td>2’15”</td>
</tr>
<tr>
<td>End of application phase</td>
<td>10’15”</td>
<td>8’30”</td>
<td>6’30”</td>
</tr>
<tr>
<td>Hardening</td>
<td>14’10”</td>
<td>11’40”</td>
<td>8’50”</td>
</tr>
</tbody>
</table>

Handling and Setting Times vs. Temperature for Open Bowl Mixing of Cobalt™ MV Bone Cement

I – Mixing phase III – Post-dough phase

II – Pre-dough phase IV – Final hardening phase
Handling and Setting Times vs. Temperature for Vacuum Mixing of Cobalt™ MV Bone Cement

I – Mixing phase
II – Pre-dough phase
III – Post-dough phase
IV – Final hardening phase

CAUTION: Federal Law (USA) restricts this device to sale by or on the order of a physician.

Comments regarding this device can be directed to Attn: Regulatory Dept., DJO Surgical, 9800 Metric Blvd., Austin, TX 78758.

All trademarks herein are the property of DJO Surgical or its subsidiaries unless otherwise indicated.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturer</td>
</tr>
<tr>
<td></td>
<td>Date of Manufacture</td>
</tr>
<tr>
<td></td>
<td>Do Not Reuse</td>
</tr>
<tr>
<td></td>
<td>Consult IFU</td>
</tr>
<tr>
<td></td>
<td>Keep Dry</td>
</tr>
<tr>
<td></td>
<td>Sterilized using Ethylene Oxide</td>
</tr>
<tr>
<td></td>
<td>Sterilized using Irradiation</td>
</tr>
<tr>
<td></td>
<td>Sterile</td>
</tr>
<tr>
<td></td>
<td>Sterilized using Aseptic Processing Techniques</td>
</tr>
<tr>
<td></td>
<td>Sterilized using Steam or Dry Heat</td>
</tr>
<tr>
<td></td>
<td>Use By</td>
</tr>
<tr>
<td></td>
<td>WEEE Device</td>
</tr>
<tr>
<td></td>
<td>Catalogue Number</td>
</tr>
<tr>
<td></td>
<td>Batch Code</td>
</tr>
<tr>
<td></td>
<td>Flammable</td>
</tr>
<tr>
<td></td>
<td>Authorized Representative in the European Community</td>
</tr>
</tbody>
</table>